To prove: The equation $(p/q)^2 = 3$ has no solution for $p, q \in \mathbb{N}$.

Suppose that there are natural numbers p and q such that $(p/q)^2 = 3$. Without loss of generality, suppose further that p and q have no common divisors (for any such divisors could be cancelled as a preliminary step without affecting the truth of the equation).

Since $(p/q)^2 = 3$, $p^2 = 3q^2$. Hence 3 evenly divides p^2, and therefore also evenly divides p. Let k be $p/3$; since 3 evenly divides p, k is a natural number. So $9k^2 = (3k)^2 = p^2 = 3q^2$, and hence $3k^2 = q^2$. Therefore, 3 evenly divides q^2, and hence also evenly divides q. Thus p and q have 3 as a common divisor, contrary to our supposition.

The original supposition must therefore be false: There are no natural numbers p and q such that $(p/q)^2 = 3$. ■