In the proof of Theorem 5.15, the construction that starts from \(\langle M, w \rangle \) and results in an encoding \(\langle P \rangle \) of an “equivalent” instance of the Post Correspondence Problem is quite long, but every step in the construction is completely algorithmic and could be performed by a Turing machine as a preprocessor. The goal of the construction is to ensure that \(P \) has a match if, and only if, \(M \) accepts \(w \). Remember that the match, if it exists, is an accepting computation history for \(M \) on \(w \). Every aspect of the construction of \(P \) is designed to ensure that this Boolean equality holds for any Turing machine \(M \) and any input \(w \).

Just to review the reduction strategy: Assume (as the hypothesis in a proof by contradiction) that there is a Turing machine \(C \) that decides \(PCP \). \(C \) takes as input any instance \(\langle P \rangle \) of the Post Correspondence Problem. \(C \) accepts \(\langle P \rangle \) if \(P \) has a match and rejects \(\langle P \rangle \) if it does not.

Using \(C \) as a subroutine, we could then construct a decider for \(A_{TM} \). Given the input \(\langle M, w \rangle \), this decider would first construct \(\langle P \rangle \), as described in the proof, and then run \(C \) on \(\langle P \rangle \), accepting if \(C \) accepts and rejecting if \(C \) rejects.

But Theorem 4.1 tells us that there is no decider for \(A_{TM} \), so there cannot be a decider for \(PCP \) either.